44 research outputs found

    Pan-genomics and the structural diversity of plant genomes

    Get PDF
    A central task of genetics research is to uncover genotypes linked to important phenotypes. However, many genomic loci are incompletely or inaccurately represented in genetics studies, thus obscuring their function and evolution. New technology can accurately and continuously sequence large segments of genomic DNA at affordable cost and unprecedented scale, raising the possibility of complete and accurate representations of genomes across the tree of life. However, new computational methods are required to automatically finish, validate, and curate the forthcoming wave of genome assemblies enabled by these technologies. Researchers must also devise analytical approaches to comparing previously unresolved and usually repetitive genomic loci within and between species. Here, we introduce RaGOO and RagTag, new methods that leverage genome maps to automatically scaffold and improve draft genome assemblies into chromosome-scale representations. By applying these new methods to a bread wheat genome, we show how the established reference falsely collapsed functional paralogs genome-wide. In Arabidopsis thaliana, we present a new reference assembly that completely resolves all five centromeres for the first time, revealing centromere architecture, genetics, epigenetics, and evolution. Finally, we present a catalog of natural structural variants (SVs) across 100 diverse tomato accessions revealing exceptional genetic diversity via artificial introgression as well as broad and specific examples of how SVs influence molecular, domestication, and improvement phenotypes. This work underscores the potential to accelerate genetics research with complete and diverse genotype data and apply these findings to plant breeding and engineering

    Perineuronal Net Formation and the Critical Period for Neuronal Maturation in the Hypothalamic Arcuate Nucleus

    Get PDF
    In leptin-deficient ob/ob mice, obesity and diabetes are associated with abnormal development of neurocircuits in the hypothalamic arcuate nucleus (ARC)1, a critical brain area for energy and glucose homoeostasis2,3. Because this developmental defect can be remedied by systemic leptin administration, but only if given before postnatal day 28, a critical period for leptin-dependent development of ARC neurocircuits has been proposed4. In other brain areas, critical-period closure coincides with the appearance of perineuronal nets (PNNs), extracellular matrix specializations that restrict the plasticity of neurons that they enmesh5. Here we report that in humans and rodents, subsets of neurons in the mediobasal aspect of the ARC are enmeshed in PNN-like structures. In mice, these neurons are densely packed into a continuous ring that encircles the junction of the ARC and median eminence, which facilitates exposure of ARC neurons to the circulation. Most of the enmeshed neurons are both γ-aminobutyric acid-ergic and leptin-receptor positive, including a majority of Agouti-related-peptide neurons. Postnatal formation of the PNN-like structures coincides precisely with closure of the critical period for maturation of Agouti-related-peptide neurons and is dependent on input from circulating leptin, because postnatal ob/ob mice have reduced ARC PNN-like material that is restored by leptin administration during the critical period. We conclude that neurons crucial to metabolic homoeostasis are enmeshed in PNN-like structures and organized into a densely packed cluster situated circumferentially at the ARC–median eminence junction, where metabolically relevant humoral signals are sensed

    The bracteatus pineapple genome and domestication of clonally propagated crops

    Get PDF
    Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops

    Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing

    Get PDF
    Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species

    Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome

    Get PDF
    The highly diverse Solanaceae family contains several widely studied model and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative P. pruinosa and use these resources to study natural and engineered variation in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9 targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system, and establish a paradigm in the search for factors driving ICS

    The genetic and epigenetic landscape of the Arabidopsis centromeres.

    Get PDF
    Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used longread sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENH3 occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show least divergence and occur in higherorder repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DSBs occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving via cycles of satellite homogenization and retrotransposon-driven diversification.BBSRC grants BB/S006842/1, BB/S020012/1 and BB/V003984/1

    The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry)

    Get PDF
    Background The genus Potentilla is closely related to that of Fragaria, the economically important strawberry genus. Potentilla micrantha is a species that does not develop berries, but shares numerous morphological and ecological characteristics with F. vesca. These similarities make P. micrantha an attractive choice for comparative genomics studies with F. vesca Findings In this study, the Potentilla micrantha genome was sequenced and annotated, and RNA-Seq data from the different developmental stages of flowering and fruiting were used to develop a set of gene predictions. A 327 Mbp sequence and annotation of the genome of P. micrantha, spanning 2,674 sequence contigs, with an N50 size of 335,712, estimated to cover 80% of the total genome size of the species was developed. The genus Potentilla has a characteristically larger genome size than Fragaria, but the recovered sequence scaffolds were remarkably collinear at the micro-syntenic level with the genome of F. vesca, its closest sequenced relative. A total of 33,602 genes were predicted, and 95.1% of BUSCO genes were complete within the presented sequence. Thus, we argue that the majority of the gene-rich regions of the genome have been sequenced Conclusions Comparisons of RNA-Seq data from the stages of floral and fruit development revealed genes differentially expressed between P. micrantha and F. vesca. The data presented are a valuable resource for future studies of berry development in Fragaria and the Rosaceae and they also shed light on the evolution of genome size and organization in this family

    Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission

    Get PDF
    n rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling
    corecore